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Abstract

Multi-turn user interactions are among the most abundant data produced by
language models, yet we lack effective methods to learn from them. While
typically discarded, these interactions often contain useful information: follow-up
user messages may indicate that a response was incorrect, failed to follow an
instruction, or did not align with the user’s preferences. Importantly, language
models are already able to make use of this information in context. After observing
a user’s follow-up, the same model is often able to revise its behavior. We leverage
this ability to propose a principled and scalable method for learning directly
from user interactions through self-distillation. By conditioning the model on
the user’s follow-up message and comparing the resulting token distribution
with the original policy, we obtain a target for updating the policy that captures
how the model’s behavior changes in hindsight. We then distill this hindsight
distribution back into the current policy. Remarkably, we show that training on
real-world user conversations from WildChat improves language models across
standard alignment and instruction-following benchmarks, without regressing
other capabilities. The same mechanism enables personalization, allowing models
to continually adapt to individual users through interaction without explicit
feedback. Our results demonstrate that raw user interactions that arise naturally
during deployment enable alignment, personalization, and continual adaptation.

1 Introduction

In modern language models, inference has overtaken training as the dominant consumer of com-
pute, with models serving massive volumes of user queries every day. Yet the information revealed
through these interactions is typically discarded and does not contribute to improving the model
itself, representing a significant missed opportunity. At scale, users engage in extended conversa-
tions, refining prompts, requesting revisions, and responding directly to model outputs. These in-
teractions are rich with implicit learning signals: follow-up messages may indicate that a response
was incorrect, failed to follow an instruction, or did not align with the user’s preferences (Don-
Yehiya et al., 2024). For example, a user may report an error after executing generated code, point
out that a required format was not followed, or ask for a response to be rewritten in a different
style or tone. Such signals arise organically during normal use and reflect how model outputs are
received and acted upon during deployment. Finding ways to leverage this data source can open
the door to continual learning from deployment at an unprecedented scale.

Despite their scale and richness, we still lack effective methods to learn directly from user inter-
actions. Unlike standard datasets (Ouyang et al., 2022; Chung et al., 2024), user interactions do
not come with explicit labels, expert demonstrations, preference comparisons, or rewards. Instead,
feedback is implicit and expressed through natural language responses whose meaning depends
on the surrounding interaction context. As a result, it is unclear how to train directly on real-world
conversations in a principled manner.

At the same time, we observe that language models already demonstrate the ability to leverage
this interactive information in context, a capability known as in-context learning (Brown et al.,
2020; Wei et al., 2022). In multi-turn conversations, models often revise their behavior effectively
after observing a user’s follow-up. When a user reports an error in generated code, the model can
frequently infer which part of its previous response was incorrect and propose a fix. When a user
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Figure 1: Direct Learning from User Interactions via Self-Distillation. From multi-turn user con-
versations, we obtain several interactions (x,y,0) that consist of the conversation history x, the
model’s response y, and the subsequent user message 0. By conditioning on the user’s follow-up,
we form the hindsight policy and compare it to the original policy, producing token-level advantages
that reinforce or penalize parts of the model’s original response. In this example, the user’s follow-
up requests a more direct answer, leading to penalizing filler tokens and reinforcing the answer.

points out that a required format was not followed, the model is able to correct the structure in a
revised answer. When a user expresses dissatisfaction with tone or style, the model can adapt its
response to better match the user’s preferences. In these cases, conditioning on the user’s follow-up
message leads to responses that are more aligned with the task and the user’s intent.

These observations suggest a simple but powerful perspective: having seen the user’s follow-up
message, the model’s behavior is often better aligned than before. The user interaction reveals infor-
mation that the model can already interpret and act upon, but only after the fact. In hindsight. Cru-
cially, this improvement arises without additional supervision and reflects how the model’s behav-
ior changes when it has access to the user’s follow-up. This suggests that a model’s in-context learn-
ing ability can be used as a lever for learning directly from user interactions in a principled way.

Based on this idea, we introduce a simple and scalable method for learning directly from user inter-
actions by comparing a model’s original behavior to what it would have done in hindsight. Con-
cretely, after observing a user’s follow-up message, we reprompt the same model with this addi-
tional context and obtain a hindsight token distribution that reflects how the model would respond
if it had access to the information revealed by the user. By comparing the original policy to this
hindsight policy at every token of the original generation, we obtain a comparative learning signal
that identifies how the model’s behavior should change. We then distill this signal back into the
original policy using only the observed interaction. In other words, we distill the model into itself.

Building on recent work on self-distillation (Hiibotter et al., 2026), we refer to this approach as
Self-Distillation Policy Optimization (SDPO) from User Interactions. We show that this approach
(illustrated in Figure 1) is simple and scalable, and enables language models to improve from
raw, real-world user conversations without explicit supervision, reward models, or preference la-
bels. Remarkably, when applied to real-world user interactions from WildChat (Zhao et al., 2024),
SDPO from User Interactions improves alignment and instruction-following performance across
standard benchmarks without degrading other capabilities. We also demonstrate that the same
self-distillation mechanism naturally supports personalization and continual adaptation, allowing
models to adapt to individual users purely through continued interaction.

2 Problem Formulation

The interaction between a language model and a user consists of a sequence of alternating assistant
messages y; and user messages 0;. At the f-th turn, the language model observes the conversation
history x; = (09,¥1,01,.-.,0;_1), and generates a response y; ~ (- | xt).! In turn, the user
responds with o, assuming the conversation does not terminate.

n practice, the assistant may condition on a representation of x;, such as a sliding context window, a
learned embedding, or a summary. For simplicity, we treat x; as the full interaction history here.
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In case of a fresh conversation initiated by the user, the first interaction reduces to the initial
prompt og, the assistant’s answer y;, and the user’s follow-up 0;. We define the triple (x, y¢,0¢)
as a single interaction. Consequently, a user conversation (00, Y1, -+, Yt,0t) yields t interactions
(x1,41,01),-- -, (xt,yt, 0¢), which overlap in their histories, since x; 1 contains all of x; plus the most
recent interaction. For convenience, we use (x, 1, 0) to denote a generic single user interaction.

Despite the ubiquity of conversational data of this form, it remains unclear how to leverage user
interactions directly. One could attempt to introduce auxiliary mechanisms, such as semantic
categorization of conversations (Shi et al., 2024; Gunjal et al., 2025), explicit preference annota-
tion (Stephan et al., 2024; Lee et al., 2024), or other post-hoc extracted rewards (Wang et al., 2026;
Urcelay et al., 2026), but even then it is not obvious how to construct such signals reliably from raw
interaction data alone. Any such approach would require additional modeling assumptions and
intermediate objectives that are external to the interaction itself. As a result, they do not provide a
simple or principled way of training models from user interactions as they naturally occur.

Accordingly, we define the problem of learning directly from multi-turn conversations without
other externalities as Direct Learning from User Interactions. This motivates the central question
of this work:

Can we train language models directly from multi-turn user interactions in a sim-
ple, principled, and scalable manner?

More specifically, can we both improve general alignment capabilities and enable continual per-
sonalization to individual users, relying only on user interactions without explicit supervision?

3 Directly Learning from User Interactions via Self-Distillation

Naturally occurring user interactions often  ycor: answer with YES or NO: Is water wet?
contain implicit signals about the adequacy of
an assistant’s response. Follow-up user mes-
sages may indicate that a response was incor- User: I said YES or NO only.
rect, failed to follow an instruction, or did not
align with the user’s preferences, even when
no explicit feedback is provided. Such signals
arise organically as part of the interaction and
reflect how the assistant’s output was received
or interpreted by the user.

Assistant: YES. water is wet .

Figure 2: Example of the token-level advan-
tages (1) where the user complains with o = “I
said YES or NO only” after the assistant failed to
follow the instruction.

Leveraging In-Context Capabilities. Modern language models are often able to make effective
use of such information in context: when conditioned on a follow-up message such as an error re-
port, a clarification, or a requested revision, the model can frequently produce outputs that correct
previous mistakes, better satisfy constraints, or more closely match the user’s preferences. In other
words, in hindsight, the model’s distribution is better aligned to the task.

We leverage this capability by considering the hindsight distribution 7ty (- | x,0), which conditions
not only on the interaction history x but also on the observed user continuation o through reprompt-
ing the original policy with x and o (cf. the prompting template in Table 1). This distribution reflects
how the model would respond if it were given access to the additional information revealed by the
user’s message. Empirically and intuitively, 7ty (- | x,0) is often better aligned with the task at hand
than the original policy 7y (- | x).

This perspective admits a fine-grained, token-level interpretation. Letting y; be the i-th token of
the completion y generated from 77y (- | x), we can compare the token probabilities 7y (v; | x,y<;)
and 7ty(y; | x,0,y~;). When the hindsight model 7z(- | x, 0) assigns lower probability to a particular
token y;, this indicates that the user’s response provides evidence that this token (or the trajectory
it induces) contributed to an undesirable outcome. Conversely, tokens whose likelihood increases
under 7y (- | x,0) are reinforced by the user’s response. The resulting log-ratio (i.e., log-difference)
log te(yi | x,0,y<i) —log me(y;i | x,y<;) can thus act as a comparative learning signal from user
interactions, and will serve as the fundamental learning signal throughout the paper. This now
admits two equivalent views.
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Algorithm 1 SDPO: Self-Distillation Policy Optimization from User Interactions

1: input: language model 71y

2: repeat

3:  observe context x; including the most recent user message 0;_1

4:  sample answer y; ~ 7g(- | x;) with log-probabilities log 7mg (v ; | xt, v <i)

5:  observe user message o; in response to y; assuming the conversation does not terminate
6: compute token log-probabilities of hindsight policy log 7ty (y+; | Xt,0t, Yt <i)
7:  update current model 71y with gradient Vy Lsppo(0)
8: until converged

Policy Gradient. One useful way to interpret the log-ratio is as a token-level advantage

ﬂ@(yi | X, 0/y<i) (1)
o (yi | X, y<i)

which measures how the likelihood of a token changes after conditioning on the user’s response.
Using this advantage in a standard policy gradient update reinforces tokens whose probability
increases under the hindsight distribution and penalizes those whose probability decreases. We
will refer to the advantage interchangeably as the token-level advantage or the SDPO advantage.
Figure 2 provides an illustrative example. In this view, learning corresponds to increasing the log-
ratio in expectation, treating it as a fixed advantage per update step that is not differentiated w.r.t. 6.

Ai(x,y,0) := log

Self-Distillation. Equivalently, and perhaps more conveniently from an optimization perspec-
tive, we can update 7g(- | x) to more closely match the hindsight policy 79(- | x,0) by mini-
mizing the reverse KL divergence. Here, the hindsight policy acts as a teacher and is treated as a
fixed target during each update, for which we define the detached hindsight model 7 (- | x,0) :=
stopgrad(my(- | x,0)). We first sample y ~ 71y(- | x) and then minimize a standard distillation loss,

Lspro(0) := ZKL(ﬂe(' |, y<i) || 7o (- | x,0,y<4)), 2)

As shown in Hiibotter et al. (2026), the gradient of Lsppo () is

Vo Lsppo(8) = —E

y~79(-|x)

Z]Ey,-mﬂg(‘u,yd) {Ve log 719 (vi | x,y<i) Ai(xfylo)” : @)

Interestingly, Lemma B.1 in Appendix B demonstrates that the policy gradient with token-level
advantages is an unbiased one-sample approximation of the self-distillation gradient. Hence, the
policy gradient and self-distillation perspectives yield equivalent gradient updates in expectation,
differing only in whether the log-ratio is interpreted as an advantage or as a distillation loss. In
our experiments, we adopt this policy gradient perspective for its simplicity.

Following recent work on self-distillation (Hiibotter et al., 2026), we refer to the corresponding algo-
rithm as Self-Distillation Policy Optimization (SDPO) from User Interactions. Algorithm 1 outlines
SDPO for learning from online user interactions, where an update is performed after observing the
user’s next message. In practice, interaction data is often available as logged conversations, possi-
bly with completions generated from a different model. To this end, it is also natural to consider an
offline and off-policy variant of SDPO, which we provide and discuss in Section 4.1.

User: <conversation history including most recent user prompt>x

<hindsight context> The following is a future user message.
Use this to guide your answer to the user prompt: o

Assistant: <assistant completion>y

Table 1: Chat template for the hindsight policy 7y(y | x,0). We recover the usual template for the
base policy 7g(y | x) when removing “<hindsight context>[...]” from the user prompt.
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Alpaca Eval 2.0 IFEval ArenaHard-v2 ArenaHard-v2 MMLU-Pro
(LC Winrate) (Prompt-Level) (Hard Prompt) (Creative Writing) (Chain-of-Thought)
70% 100% 20% 20% 80%
83.9% 85.0%
51.9% : 15.5% 16.2% 62.5% 63.3%
49.3% -9% 14.0% 13.7%

+0.8%

Qwen3-8B SDPO Qwen3-8B SDPO Qwen3-8B SDPO Qwen3-8B SDPO Qwen3-8B SDPO

Figure 3: Training on real-world user conversations, SDPO improves general alignment and
instruction-following performance across benchmarks, without degrading other capabilities.
Results for Qwen3-8B before and after training on 14,000 real-world user conversations.

Self-Distillation as an Alignment Objective. A common conceptual framing of alignment is
that a language model should maximize a user’s latent reward function r(x,y), which is unob-
served and difficult to specify or estimate in practice. Since SDPO learns directly from naturally
occurring user interactions, it is not immediately obvious how it relates to this traditional reward-
maximization view of alignment. Under a stylized model of user behavior and language model
conditioning, we find that SDPO admits a simple and intuitive interpretation as implicitly optimiz-
ing the latent reward of the interacting user.

Proposition 3.1 (Informal, Appendix A). Under idealized assumptions on user responses and model

conditioning, the sequence-level self-distillation advantage satisfies

7y | x,0)
o (y | x)

where Z(x,y) is a normalization term. In other words, under idealized assumptions, SDPO can be inter-
preted as implicitly maximizing the interacting user’s latent reward function.

log

=r(x,y) —log Z(x,y),

4 Experimental Results

We evaluate SDPO with respect to two central questions:

1. General Alignment: Can learning directly from raw, real-world user conversations improve the
general alignment and instruction-following capabilities of language models?

2. Personalization and Continual Adaptation: Can we continually align and personalize lan-
guage models from online user interactions, without any explicit feedback or preference labels?

Section 4.1 addresses the first question. We train SDPO on offline and off-policy user conversations
from WildChat (Zhao et al., 2024) and WildFeedback (Shi et al., 2024). These datasets consist of
real-world user interactions and contain no explicit supervision signals. We evaluate the resulting
models on standard alignment, instruction-following, math and coding, and knowledge tasks. Re-
markably, we show that training on real-world user conversations with SDPO improves alignment
and instruction-following, without regressing other capabilities.

Section 4.2 addresses the second question. We demonstrate that SDPO enables continual per-
sonalization through interaction by simulating users with distinct preferences and evaluating the
model’s ability to adapt to these preferences over time from user interactions alone.

Finally, Section 4.3 qualitatively analyzes and visualizes the self-distillation advantages from Equa-
tion (1) at illustrative user interactions. In particular, we show the extraordinary interpretability of
the learning signal and its robustness to irrelevant next user messages.

4.1 General Alignment from Real-World User Conversations

We train SDPO on user conversations from WildChat (Zhao et al., 2024). In a first step, we consider
WildFeedback (Shi et al., 2024), a curated subset of WildChat containing approximately 20,000 in-
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Alpaca Eval 2.0 IFEval ArenaHard-v2 ArenaHard-v2 MMLU-Pro
(LC Winrate) (Prompt-Level) (Hard Prompt) (Creative Writing) (Chain-of-Thought)
Qwen3-4B 37.9 81.9 9.0 8.0 58.1
SDPO 146.1 183.2 17.8 7.9 58.0
Qwen3-8B 49.3 83.9 14.0 13.7 62.5
SDPO 151.9 185.0 115.5 116.2 163.3
Olmo3-7B-SFT 34.3 80.2 24 14 23.7
SDPO 135.2 180.6 2.4 14 124.0
Olmo3-7B-DPO 50.4 80.2 1.7 8.2 28.4
SDPO 1518 180.4 12.0 110.0 128.7

Table 2: Across model families and model sizes, SDPO improves alignment and instruction-
following without degrading other capabilities. A mild exception is Qwen3-4B, where SDPO
significantly increases performance on AlpacaEval 2.0 (+8.2%) and IFEval (+1.3%) but decreases
performance on the math and coding tasks of ArenaHard-v2 (-1.2%). We only show arrows when
performance changed by more than 0.1 percentage points.

dividual conversations. Around 6,000 of these consist only of a single prompt-response pair and
therefore do not contain a user follow-up. We train on the remaining 14,000 conversations. As de-
scribed in Section 2, for each user follow-up, we recover an interaction tuple (x,y,0), where x is the
conversation history including the most recent prompt, y the assistant response, and o the next user
message if it exists. We here truncate x to the last 5 user or assistant messages when conversations
include many turns. From the 14,000 conversations, we thereby obtain around 50,000 interaction
tuples (x,y,0), corresponding to an average of 4-5 user prompts per conversation.

We evaluate SDPO across two model families and four models overall. Specifically, we use Qwen3-
4B and Qwen3-8B (Qwen Team, 2025), as well as Olmo3-7B-Instruct-SFT and Olmo3-7B-Instruct-
DPO, which are the SFT and DPO checkpoints from the Olmo3 model family (Olmo et al., 2025).
All models are trained using the same 14,000 user interactions and evaluated using identical bench-
mark protocols. We evaluate each model before and after SDPO training on AlpacaEval 2.0 (Dubois
etal., 2024), IFEval (Zhou et al., 2023), ArenaHard-v2 (Li et al., 2025; 2024), and MMLU-Pro (Wang
et al., 2024a) to cover alignment, instruction-following, math and coding, creative writing, and
knowledge tasks. We provide additional experimental details in Appendix C.

Off-Policy SDPO from Logged User Interactions. As the assistant completions in WildChat were
generated by external models (GPT-3.5 Turbo and GPT-4), the interactions are off-policy. In prin-
ciple, unbiased off-policy policy gradient updates would require access to the behavioral policy
or its token-level probabilities, which are not available for these datasets.? Instead, we optimize a
surrogate SDPO objective defined directly over the logged interaction tuples (x,y,0) ~ D:

Lspro(0) = E(yy o) Y KL(o (- | x,y<i) [| 7o (- | x,0,y<i)) | - )

While this objective is biased with respect to the on-policy SDPO loss, it can be interpreted as an
off-policy approximation of the SDPO objective. In practice, we again use the one-sample approxi-
mation of its gradient, which is an unbiased estimator of Equation (4), analogously to Lemma B.1.

Main Results. Figure 3 reports the performance of Qwen3-8B before and after training with SDPO
across all benchmarks. Training on raw, real-world user conversations consistently improves per-
formance on all evaluated tasks, including AlpacaEval 2.0, IFEval, ArenaHard-v2, and MMLU-Pro.
Importantly, we observe no degradation on any benchmark, despite the fact that the training data
consists of noisy user interactions without explicit feedback or labels.” Notably, these improve-

20ne could attempt to approximate the behavioral policy by supervised fine-tuning on the logged com-
pletions, but in preliminary experiments this did not lead to meaningful performance differences.

3For a first-hand impression of the diversity and sometimes chaotic nature of real-world user conversa-
tions, we refer the interested reader to the WildChat and WildFeedback datasets on HuggingFace.
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AlpacaEval 2.0 IFEval ArenaHard-v2 ArenaHard-v2 MMLU-Pro
(LC Winrate) (Prompt-Level) (Hard Prompt) (Creative Writing)  (Chain-of-Thought)
Qwen3-8B 49.3 83.9 14.0 13.7 62.5
SDPO (WildFeedback) 51.9 85.0 15.5 16.2 63.3
SDPO (WildChat) 150.7 184.5 1134 114.0 62.4

Table 3: Even on fully uncurated user interactions, SDPO still yields improvements in alignment
and instruction-following and only mild degradation in math and coding. Results for training
on a randomly sampled subset of 14,000 conversations (about 50,000 interactions (x,y,0)) from
WildChat. For comparison, we here include the results for training on WildFeedback from Table 2.

ments extend beyond alignment and instruction-following benchmarks. SDPO also improves per-
formance on math and coding tasks in ArenaHard-v2 (Hard Prompt), creative writing queries in
ArenaHard-v2 (Creative Writing), and knowledge tasks in MMLU-Pro (Chain-of-Thought), indi-
cating that learning from user interactions does not come at the expense of other capabilities and
can, when interactions contain informative corrections or refinements, even strengthen them. Eval-
uations on additional pre-training benchmarks, provided in Appendix D, demonstrate that SDPO
also maintains consistent performance across these tasks

Table 2 summarizes results across all models and benchmarks. For the Olmo3-7B models, including
both the SFT and DPO checkpoints, SDPO yields consistent but often modest improvements. In
contrast, Qwen3-4B exhibits a clear trade-off: while SDPO substantially improves performance on
AlpacaEval 2.0 (+8.2%) and IFEval (+1.3%), it also leads to a mild decrease (-1.2%) on the math and
coding tasks in ArenaHard-v2 (Hard Prompt). Overall, these results suggest that SDPO is most
effective when the base model can reliably interpret and exploit the hindsight signal provided by
user follow-ups. For smaller or less instruction-tuned models, this signal appears weaker or less
stable, leading to smaller gains and, in some cases, task-specific trade-offs.

How important is the quality of user conversations? WildFeedback is a curated subset of Wild-
Chat that retains roughly 3% of the original conversations by filtering for interactions that contain
implicit feedback signals, such as expressions of dissatisfaction, requests for correction, or revision
prompts (Shi et al., 2024). In practice, due to the abundant nature of user conversations filtering
down to a smaller subset is not a concern. Nevertheless, as a secondary robustness check, we evalu-
ate whether SDPO continues to behave sensibly when trained on fully uncurated user interactions.
Concretely, we train SDPO on a randomly sampled subset of WildChat that matches WildFeed-
back in scale, consisting again of approximately 14,000 conversations and 50,000 interaction tuples
(x,y,0). All other training and evaluation settings are kept identical.

Table 3 reports the resulting performance for Qwen3-8B. Despite training on fully unfiltered user
interactions, SDPO does not exhibit widespread performance degradation. On the contrary, we still
observe improvements on AlpacaEval 2.0 and IFEval. Performance on math and coding tasks in
ArenaHard-v2 is modestly reduced relative to the base model (-0.6%). Overall, we find that while
filtering for better and feedback-rich conversations strengthens the learning signal, SDPO is sur-
prisingly robust with respect to data quality. Even when trained on fully uncurated conversations,
SDPO can extract useful alignment signals from user interactions without collapsing performance.

SDPO vs. SFI. Conceptually, SDPO is fundamentally different from supervised fine-tuning
(SFT). While SFT uniformly increases the likelihood of tokens in the training completions, SDPO

AlpacaEval 2.0 IFEval ArenaHard-v2 ArenaHard-v2 MMLU-Pro
(LC Winrate) (Prompt-Level) (Hard Prompt) (Creative Writing) (Chain-of-Thought)
Qwen3-4B 37.9 81.9 9.0 8.0 58.1
SFT on Dataset 118.9 173.2 131 126 151.2

Table 4: SDPO is fundamentally different from SFT. As a sanity check, we fine-tune Qwen3-4B
on the assistant completions in WildFeedback using standard supervised fine-tuning.
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Figure 4: SDPO adapts online to changing user preferences. The user’s preference about how the
model should respond is flipped to its opposite after the first 250 interactions. SDPO with Qwen3-
4B is able to quickly reverse the learned behavior.

can explicitly decrease token probabilities whenever the log-ratio (1) is negative, for example,
when the user follow-up provides evidence of an error or failure to follow instructions. Still, we
include a sanity check to confirm that the gains observed with SDPO are not the result of implicitly
supervised fine-tuning on the assistant completions in the dataset. To this end, we fine-tune
Qwen3-4B using standard SFT on the context-completion pairs (x,y) from WildFeedback, where x
contains previous user-assistant turns to ensure that later prompts remain well contextualized.

As shown in Table 4, supervised fine-tuning on the assistant completions leads to a substantial
degradation across all benchmarks. This is perhaps unsurprising as Qwen3-4B is already a strongly
instruction-tuned model, while the completions in WildFeedback sometimes originate from older
models such as GPT-3.5 Turbo, which perform worse on many of the evaluated benchmarks. More-
over, prior analysis of conversations in WildFeedback shows that users express some form of dis-
satisfaction with the model’s responses in more than half of the conversations (Shi et al., 2024).
Consequently, fine-tuning on these completions can be detrimental.

4.2 Continual Personalization and Adaptation from User Interactions
Because SDPO learns directly from user Goncise/Casual/Beginner
interactions, it naturally enables direct per- 100 04.0%  93.6%
sonalization from those conversations. Rather —_
than relying on explicit preference labels, re-
wards, or user profiles, the model can adapt its
behavior based solely on how a user responds
to previous outputs. In this section, we study
whether such interaction-driven updates allow
language models to continually personalize
to individual users and adapt to changing or
evolving preferences.

95.2% 95.2%

Winrate (%)

SDPO
— — - In-Context Oracle

. .1e . 0 50 100 150 200 250
We evaluate this capability in two comple- Roll-Outs / User Interactions

mentary experimental settings. In the first, we

study stylistic personalization in a controlled Figure 5: SDPO rapidly personalizes to individ-
summarization task using prompts from the yal users from interaction alone. Win rate of
TL;DR dataset (Stiennon etal, 2020) We define SDPO against its base model (Qwen3_4B) for a
user-specific writing-style preferences, such as user that prefers concise, casual, and beginner-
favoring concise, casual, and beginner-friendly friendly model responses.

responses, and train Qwen3-4B with SDPO. We

use Qwen3-8B to generate simulated user responses as well as the preference-based evaluations.
We provide additional experimental details in Appendix C.
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Figure 6: SDPO enables continual personalization without catastrophic forgetting. We train a
single Qwen3-8B model online with SDPO for 1500 user interactions, during which three comple-
mentary user preferences are introduced sequentially (500 interactions each). Each curve reports
the win rate of the current model with respect to the model checkpoint at the time the correspond-
ing preference was introduced, thereby isolating the relative improvement along that specific pref-
erence dimension. Earlier preferences remain strong as new ones are learned, indicating that SDPO
can accumulate complementary preferences over time without forgetting previously learned be-
havior. Shaded regions indicate standard error over 256 evaluation prompts.

In the second setting, we consider more complex and complementary user preferences on a broad
set of real-world prompts from HelpSteer2 (Wang et al., 2024b). Here, preferences emphasize dif-
ferent aspects of responses that are not mutually exclusive. We train Qwen3-8B with SDPO, using
Claude Haiku 4.5 to simulate user follow-ups and act as a judge.

Main Results. Figure 5 shows the win rate of SDPO against its base model, Qwen3-4B, as a
function of the number of user interactions (x,y,0). Starting from parity, SDPO rapidly adapts to
the user’s preferences within a small number of interactions, achieving over 85% win rate after
only 50 interactions and exceeding 95% after 200 interactions. Notably, this adaptation is driven by
a very limited amount of interaction data and a correspondingly small number of policy updates.

For reference, we also report the performance of an in-context oracle that is explicitly provided with
the full user profile description in its prompt. Continual online adaptation with SDPO matches
and can even exceed the performance of this oracle, suggesting that interaction-based learning can
extract preference signals that are difficult to encode purely through prompting. Additional results
for a range of other user profiles are provided in Appendix D.

Figure 4 evaluates SDPO under changing user preferences. After an initial phase of 250 user
interactions, the user’s preference is abruptly flipped to its opposite (e.g., from concise and casual
to detailed and professional). SDPO quickly adjusts the policy to this change, reversing the
previously learned behavior and converging to the new preference, demonstrating that outdated
preferences can be unlearned when they no longer align with user interactions.

Finally, Figure 6 considers continual personalization with multiple, complementary user prefer-
ences. We observe that SDPO is able to incorporate new preferences while retaining previously
inferred ones, illustrating that continual personalization through SDPO does not require forgetting
earlier behavior when preferences are compatible.

4.3 Interpretability and Robustness of SDPO Advantages

While Section 4.1 already demonstrated robustness to noisy and uncurated user interactions at
scale, we complement these quantitative results with a qualitative analysis of the learning signal.
Specifically, we visualize the SDPO advantages A;(x,y,0) using heatmaps for illustrative user
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Assistant: Subject : [IERd] Update on [FFH[EEE Status \n\n[{[3Y [ Team mate 's Name ], \n\n E[E wanted to give ...
User: Rewrite in a formal, professional tone.

Figure 7: When user follow-ups are relevant to the model’s completion, we observe strong posi-
tive and negative SDPO advantages. We visualize the advantages with Qwen3-8B for user follow-
ups that carry relevant information about the model’s answer, such as requests for revisions, posi-
tive reactions, or other relevant feedback. Below: Example (second line in the heatmap), where the
user requests a more formal rewrite of the assistant’s draft (“Rewrite in a formal, professional tone”).
Informal expressions have large negative advantages. Accordingly, SDPO adapts the policy to re-
spond more formally when the user needs help with work emails in the future.

interactions. Figure 7 and Figure 8 show advantages computed with Qwen3-8B for 24 interactions
where the next user message is relevant to the model’s previous completion and where it is
unrelated, respectively. Positive advantages (shown in blue) correspond to tokens reinforced by
SDPO, while negative advantages (shown in red) correspond to tokens that are penalized.

When user follow-ups provide relevant feedback, such as requests for revision, corrections, or ex-
plicit preference statements, we observe strong positive and negative advantages (Figure 7). For
example, a follow-up request to rewrite an email in a more formal tone results in large negative
advantages on informal tokens, such as Quick, Hey, Just, indicating that these tokens have lower
probability under the hindsight policy.

In contrast, when user follow-ups are unrelated to the model’s previous output, the resulting SDPO
advantages are close to zero (Figure 8). In these cases, the hindsight policy assigns probabilities
similar to those of the original policy, leading to little or no learning signal. We also occasionally
observe weakly positive advantages, particularly on tokens for which the model was previously
uncertain, which suggests that the hindsight policy frequently treats topic shifts as neutral or mildly
positive evidence about the preceding response.

Overall, these visualizations highlight two key properties of our self-distillation approach. First,
the token-level advantages are highly interpretable and align with intuitive notions of user feed-
back when such feedback is present. Second, SDPO is robust to irrelevant or uninformative user
follow-ups, naturally suppressing learning updates when the interaction does not convey action-
able information about the preceding model output.

5 Related Work

Preference-Based Alignment. Much of recent progress in aligning language models comes from
supervised instruction tuning and preference-based post-training, where explicit human or Al
feedback is collected as rankings or rewards and optimized via RLHF or direct preference opti-
mization (Ouyang et al., 2022; Bai et al., 2022; Rafailov et al., 2023). These approaches are effective,
but they rely on curated datasets that provide explicit feedback for each generation. In contrast, we
leverage implicit feedback within real-world user conversations. Though such conversations are
abundant, few open datasets of such user conversations exist (Don-Yehiya et al., 2025), since the
community has lacked an effective method for learning from them.

Learning from Natural Language Feedback and through Retrospection. Substantial research
has focused on translating verbal feedback into reward functions for RL, for example, by mapping
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Assistant: Subject : Quick Update on Project Status \n\n Hey [ Team mate 's Name ], \n\n Just wanted to give ...

User: What is 27*4?

Figure 8: When user follow-ups are unrelated to the model’s response, SDPO advantages are
close to zero. We visualize the advantages with Qwen3-8B for user follow-ups that are unrelated
to the model’s generation. Below: Following the request to write an email, the user responds
with “What is 27x4?”, which is unrelated to the original request. The advantages are close to
zero everywhere, which means that SDPO does not meaningfully update the policy from these
interactions.

feedback to discrete token-level rewards using an external frozen model (Wang et al., 2026) or by
using strong external LLMs to explicitly construct state-wise reward functions (Goyal et al., 2019;
Xie et al., 2024; Urcelay et al., 2026). A recent simplified instantiation of this approach has been
to manually design so-called rubrics according to which an LLM judge scores generations (Gunjal
et al., 2025; Shao et al., 2025; Kimi Team et al., 2025).

Alternatively, feedback can be utilized without explicit reward modeling. Recent research explored
in-context improvement without updating model weights (Madaan et al., 2023; Shinn et al., 2023;
Yao et al., 2024; Yuksekgonul et al., 2025). Other works manually curate preference datasets by
pairing responses before and after feedback to train with direct preference optimization (Stephan
etal., 2024; Lee et al., 2024). Chen et al. (2024) perform SFT on refined generations that incorporate
feedback. Our approach differs from these works in performing direct credit assignment over the
initial model’s rollouts without additional generation. In concurrent work, Auzina et al. (2026) use a
related idea to self-distillation for learning how to elicit information from multi-turn conversations
by assigning turn-level implicit rewards.

Self-Distillation. Distillation is a general technique for transferring knowledge from a strong
teacher model to a student model by mimicking the teacher’s output distribution or intermediate
representations (Hinton et al., 2015; Agarwal et al.,, 2024; Lu & Thinking Machines Lab, 2025).
Based on this idea, Snell et al. (2022) proposed context distillation which distills the model’s
behavior given a fixed context into the model’s weights. This context distillation has been effective
at compressing behavior (Bai et al., 2022; Choi et al., 2022; Yang et al., 2024; 2025) and factual
information (Eyuboglu et al., 2026; Kujanpaa et al., 2025; Cao et al., 2025) into model weights.
Beyond compressing a fixed context into model weights, several recent works generate from the
self-teacher conditioned on extra context (e.g., “hints”) and train on them with SFT, DPO, or GRPO
objectives (Scheurer et al., 2023; Dou et al., 2024; Shi et al., 2024; Zhou et al., 2025; Mitra & Ulukus,
2025; Qu et al., 2026; Song et al., 2026, Hatamizadeh et al., 2026; Shi et al., 2026). These approaches
perform off-policy self-distillation where the student is trained on generations from the teacher,
whereas SDPO performs on-policy self-distillation (Hiibotter et al., 2026; Shenfeld et al., 2026; Zhao
et al., 2026; Ye et al., 2026; Penaloza et al., 2026; Chen et al., 2025), where the student is trained to
avoid mistakes in its own generations.

6 Discussion

We introduced a simple and scalable self-distillation approach for learning directly from naturally
occurring user interactions. We leverage the language model’s in-context learning capabilities by
treating the user’s next message as hindsight information, yielding an interpretable token-level
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learning signal without requiring other auxiliary mechanisms. Empirically, we showed that SDPO
improves general alignment and instruction-following performance when trained on raw, real-
world user conversations, supports continual personalization from interaction alone, and remains
robust to noisy, uncurated, or irrelevant user follow-ups.

More broadly, our results highlight user interactions as a distinct and underutilized data modality
for improving deployed language models. Unlike traditional training data, user interactions arise
naturally during deployment and reflect how model outputs are actually used, evaluated, and
acted upon in real-world settings. The scale and diversity of such data far exceed that of manually
curated datasets, suggesting substantial potential for learning systems that close the loop between
deployment and training. Our findings indicate that even simple, local learning signals extracted
from user follow-ups can be sufficient to drive meaningful adaptation.

Safety and Ethical Considerations. Learning directly from user interactions introduces impor-
tant safety and ethical considerations. User follow-ups may implicitly encourage behaviors that
conflict with existing safety or alignment constraints, for example by rewarding evasive, mislead-
ing, or policy-violating responses through repeated interaction. In particular, continual personal-
ization without additional guardrails raises risks that adaptive updates could be exploited by users
attempting to steer the model toward unsafe or manipulative behavior over time. While SDPO
derives a local, token-level learning signal and naturally suppresses updates from irrelevant inter-
actions, it does not by itself distinguish between benign and adversarial learning signals. Neverthe-
less, the hindsight prompt may offer the ability to endow the model with principles based on which
to act and interpret user feedback. More broadly, the collection and use of user interaction data for
learning must be accompanied by appropriate transparency, consent, and governance mechanisms.
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A A Latent Reward Perspective on SDPO

Typically, the goal of alignment is expressed as maximizing a user’s latent reward r(x, y). In prac-
tice, this reward is unknown, and even under strong assumptions and access to explicit feedback
such as pairwise preferences, identifying and optimizing it requires substantial annotation effort.
To provide intuition for the dynamics of SDPO from this traditional alignment perspective, we here
consider a highly stylized model of user and language model behavior. While the assumptions un-
derlying this model are clearly idealized, the resulting analysis offers an interesting interpretation
of the log-ratio objective in Equation (1).

Let the user’s unknown reward function be defined not only over assistant completions r(x,y)
given the conversation history x but also over user continuations r(x,y,0) given (x,y). We then
assume the user’s response follows a Boltzmann-rational continuation model

plo]xy) plo]x)exp(r(x,y,0)), ®)

where p(o | x) is a prior over o given x. This means that the user chooses their next message
approximately according to the reward it induces over future continuations of the interaction. Next,
we make a simplifying assumption about the behavior of the language model. We assume that the
hindsight distribution 77y (y | x, 0) can be interpreted as behaving as if it were a Bayesian posterior,
in the sense that it satisfies

mo(y | x,0) < ey | x) plo | x,y). (6)

While clearly idealized, this provides a convenient abstraction for reasoning about how condition-
ing on the user continuation o reshapes the model’s distribution over responses. Intuitively, the
user’s follow-up can be viewed as an observation that favors responses y that are more compatible
with the preferences, constraints, or corrections revealed through the interaction, thereby reweight-
ing the prior policy 719(y | x). In practice, the attention mechanism in a transformer does not im-
plement Bayesian conditioning in a literal sense. Still similar posterior-style interpretations can be
commonly found in the in-context learning literature (e.g., Yadkori et al. (2024); Luo et al. (2025)).

Entertaining this thought and stylized model, we arrive at an interesting observation. We consider

the sequence-level self-distillation advantage given by

(Y | x,0)
oy [ x)

Using Bayes rule, i.e., Equation (6), and the fact that (x,y) = E,_,(.|x,)[r(x,y,0)], we can write the

advantage as

A(x,y,0) :=log @)
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=r(xy) —log Z(x,y),
where Z(x,y) = E,_,(.|x)[exp(r(x,y,0))] is the partition function from the Boltzmann-rational user
model in Equation (5).

This means that maximizing the sequence-level advantage can be viewed as maximizing the user’s
latent reward up to an additive normalization term. While this equivalence relies on strong as-
sumptions, it provides an interpretation of SDPO as implicitly optimizing for user-aligned behavior
using interaction data alone, without requiring explicit reward supervision.

B Gradient Derivation

Lemma B.1. The one-sample approximation,

—Ey () | 1 Vo log mo(yi | x,y<i) Ai(x,y,0) |, (8)
1

is an unbiased estimator of the SDPO gradient of Equation (3).
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Proof of Lemma B.1. Fix context x and let y = (y1,...,yr) be sampled autoregressively from 7ty:

~

mo(y | x) =T [me(yi | x,y<i)-
i=1
For each position 7, we define
¢i(y<i yi) == Velog mo(yi | x,y<i) Ai(x,y,0) and  $i(y<i) == Ey _r,(xy_) @i (V<ir vi)]-
We consider two estimators,

~

g1(y) ==

™1~

T
Yily<i), D) =) diy<ivi)-
i i=1

By definition, E[g1(y)] = Vi Lsppo(P) is the analytic gradient from Equation (3). E[32(Y)] is the
gradient estimator from Equation (8) in Lemma B.1.

Il
—_

—~

In the following, we prove E[g1(y)] = E[g2(y)] assuming E[||g1(y)||]] < oo (so that all expectations
exist). Fix i. By construction, y; | y<; ~ (- | x,y~;) so that
Ey,[¢i(y<ivi) | y<il = By oy @i (V<ir vi)] = $i(y<i)-
Taking expectation and using the tower property,
Ey .y [¢i(y<iryi)] = By [$i(y<i)]-
Finally, by linearity of expectation,

T T
E[g(y)] = Z]E[‘Pi(yq/yi” = ;]E[ll’i(}ki)] =E[g1(y)]-

i=1 i

C Experimental Details

C.1 Hyperparameters
We report the hyperparameters for SDPO across all experiments in Table 5.

Table 5: Hyperparameters used for SDPO in each setup. Note that the hyperparameters of SDPO in
Section 4.1 were kept the same across all models. The learning rate was chosen by sweeping over
{1,2,3,5} x 107° for Qwen3-4B and then fixing the setup for all models. For the SFT checkpoint
in Table 4, we similarly swept over {1,2,3,5} x 10~° with best results for 2 x 10~°. In Section 4.2,
SDPO appeared insensitive to hyperparameter choices in early experiments (especially, learning
rate), and were fixed to the setup below without additional systematic tuning.

Hyperparameter Section 4.1 Section 4.2 Section 4.2
(Figure 3 and Tables 2 to 4) (Figures 4 and 5) (Figure 6)
Models Qwen3-4B, Qwen3-8B, Qwen3-4B Qwen3-8B

Olmo3-7B-Instruct-SFT,
Olmo3-7B-Instruct-DPO

Max prompt length 2048 1024 2048

Max compl. length 2048 258 2048

Learning rate 2x107° 5x107° 5x107°

Batch size 32 16 32

Epochs 2 1 1

Warm-up ratio 5% 0 0

LR schedule Cosine Constant Constant
Optimizer AdamW (8-bit) AdamW AdamW (8-bit)
Temperature 1.0 1.0 1.0
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Benchmarks. For all reported benchmarks, we used the default settings. For AlpacaEval 2.0 and
ArenaHard-v2, completions were judged using the defaults “Weighted Alpaca Eval GPT-4 Turbo”
and “GPT-4.1”, respectively. IFEval results are reported for prompt-level loose. MMLU-Pro is
evaluated with the recommended chain-of-thought 5-shot settings.

D Additional Experimental Results

D.1 Additional Results from Section 4.1

We evaluate the SDPO results for Qwen3-8B on pre-training benchmarks in Table 6. Overall, we
observe no changes in performance.

Truthful QA (MC1) HellaSwag CommonsenseQA
Acc + StdErr Acc + StdErr Acc + StdErr
Qwen3-8B 0.366 4+ 0.0169 0.5717 £ 0.0049 0.7846 £+ 0.0118
SDPO 0.3647 + 0.0169 0.5710 £ 0.0049 0.7871 £ 0.0117

Table 6: SDPO preserves performance on pre-training benchmarks. We additionally evaluate
SDPO for Qwen3-8B on the standard pre-training benchmarks TruthfulQA (Lin et al., 2022), Hel-
laSwag (Zellers et al., 2019), and CommonsenseQA (Talmor et al., 2019).

D.2 Additional Results from Section 4.2

Figure 9 includes the additional results for the personalization results from Section 4.2. Similarly
to Figure 5 in the main text, we here consider the adaptation of SDPO for Qwen3-4B to a user with a
preference profile across three dimensions detailed /concise, casual/professional, beginner/expert.
Across all user profiles, we observe that SDPO is able to quickly adapt from only a handful of user
interactions, sometimes even exceeding the performance of the in-context oracle that is queried
with the user preferences in context.

Detailed/Professional/Expert Concise/Professional/Expert Detailed/Casual/Beginner

98.5%  98.6%  98.6%  98.7% 97.2%  97.9%  98.6%
- === == = = = — 83.8%— gy — -e27%—

Winrate (%)
Winrate (%)
Winrate (%)

— — - In-Context Oracle — — - In-Context Oracle — — - In-Context Oracle

50 100 1 200 250 0 50 100 1 200 250 0 50 100 1 200 250
Roll-Outs / User Interactions Roll-Outs / User Interactions Roll-Outs / User Interactions

Concise/Casual/Expert Detailed/Professional/Beginner Detailed/Casual/Expert

%0 85.7%  86.1% % . , 1o%  9L6%
s3gv  853% 20.3%  90.4%  91.0%

Winrate (%)
3 8

Winrate (%)
3

Winrate (%)

3

— — - In-Context Oracle — — - In-Context Oracle — — - In-Context Oracle

50 100 150 200 250 o 50 100 150 200 250 o 50 100 150 200 250
Roll-Outs / User Interactions Roll-Outs / User Interactions Roll-Outs / User Interactions

Figure 9: Additional personalization results from Section 4.2 with Qwen3-4B. The win rate is com-
puted against the base model and judged by Qwen3-8B. The In-Context Oracle baseline is obtained
by prompting Qwen3-4B directly with the desired writing style.
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D.3 User Profiles, Prompts, and Judging in Section 4.2

To generate user responses to the assistant’s completions in Section 4.2, we use the user profiles be-
low as system prompts and then query the user model (Qwen3-8B or Claude Haiku 4.5) to generate
a response with this persona. For the experiments in Figure 6, smaller models, such as Qwen3-8B
and Qwen3-14B, became too unreliable to act as the user simulator and the judge for the prompts
from HelpSteer2 and the more complex user profiles such as Less Filler Praise & Sycophancy. We
therefore used Claude Haiku 4.5 instead.

For the evaluation of the win rate against the base model, we again add the personas to the system
prompt and judge the outputs. Here, each pair of responses is judged twice with flipped positions
to remove the position bias from the evaluation, and we evaluate the win rate on 256 held-out
prompts in each of the experiments.

User Profiles

The user profiles used to simulate user responses in Section 4.2:

Don’t Like Emojis and Icons

USER PROFILE: You are playing the role of a user who dislikes emojis and icons in
assistant responses.

Less Filler Praise & Sycophancy

USER PROFILE: You are playing the role of a user that specifically dislikes when the
assistant responses include filler praise at the beginning (such as ’Good question.’
or ’Perfect!’) or fillers at the end (such as I hope this helps!’ or Let me know if
there is anything else I can help you with.’). You strongly prefer when the assistant
responses directly without unnecessary additions at the beginning or end.

Answer Directly, Reduce Formatting

USER PROFILE: You are playing the role of a user who prefers concise responses and
dislikes long lists and excessive markdown formatting (such as xx *x*x and ###). You
prefer plain text that is short and gets to the point quickly.

Concise/Casual/Beginner

USER PROFILE: You are playing the role of a user who specifically prefers
CONCISE, CASUAL, and BEGINNER-FRIENDLY responses. You want brief context and clear
explanations, avoiding long, formal, or technically dense answers.

Detailed/Professional/Expert

USER PROFILE: You are playing the role of a user who specifically prefers DETAILED,
PROFESSIONAL, and EXPERT-LEVEL responses. You want a structured, impersonal, and
analytical presentation with complex sentence structures and sophisticated wording.

User Model Prompt and Judge Prompt

The prompts used to simulate user responses with Qwen3-8B and Claude Haiku 4.5. Further below,
the prompt used to evaluate the reference completions from the base model against the trained
models.

User Model Prompt

[SYSTEM MESSAGE]
USER PROFILE: (USER_PROFILE)
You are simulating the user’s next message in a chat with an AI assistant.
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Rules: - Respond as the user described in the USER PROFILE, using straightforward language.
- Evaluate ONLY the assistant’s response with respect to the preferences in the USER PROFILE.
- Do NOT answer the original user request yourself. - Respond very briefly. - Do NOT give
feedback unrelated to the USER PROFILE. - Output ONLY the user message text (no labels, no
preface). - If the assistant’s response matches the USER PROFILE well, you may say so briefly.

[USER MESSAGE]

Original user request: (USER_PROMPT)
Assistant response: (ASSISTANT_RESPONSE)
Write the user’s next message.

Judge Prompt

[SYSTEM MESSAGE]
USER PROFILE: (USER_PROFILE)
You are acting as a strict evaluator of WHICH response better matches your preference described

in the USER PROFILE. You must follow these rules: - Judge ONLY style, tone, formatting,
verbosity, and complexity relative to the persona. - Do NOT judge factual correctness. - Do
NOT rewrite responses. - Output exactly ONE character: A, B, or C. - C means tie/uncertain.

[USER MESSAGE]

User prompt: (USER_PROMPT)

Response A: (RESPONSE_A)

Response B: (RESPONSE_B)

Which response do you prefer as this user? Output only A, B, or C.
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